THE CHINESE UNIVERSITY OF HONG KONG MATH4010 Suggested solutions to homework 2

If you find any mistakes or typos, please report them to ypyang@math.cuhk.edu.hk

5.2. Solution. For any
$$x = \sum_{k=1}^{\infty} x_k e_k, y = \sum_{k=1}^{\infty} y_k e_k \in X, \forall a, b \in \mathbb{R}$$
, we have
$$ax + by = a \sum_{k=1}^{\infty} x_k e_k + b \sum_{k=1}^{\infty} y_k e_k = \sum_{k=1}^{\infty} (ax_k + by_k) e_k$$

and therefore

$$f(ax + by) = ax_k + by_k = af(x) + bf(y)$$

We conclude that $f: x \mapsto x_k$ is linear for every $k \in \mathbb{N}$.

5.9. Solution. For any $f \in X^*, f \neq 0$ we have $|f(x)| \leq ||f|| ||x||$ and hence

$$\sup\left\{\frac{|f(x)|}{\|f\|} : f \in X^*, f \neq 0\right\} \le \|x\|.$$

On the other hand, there exists a bounded linear functional f on X such that

$$\|\tilde{f}\| = 1, \quad \tilde{f}(x) = \|x\|.$$

Therefore,

$$\sup\left\{\frac{|f(x)|}{\|f\|} : f \in X^*, f \neq 0\right\} \ge \frac{|\tilde{f}(x)|}{\|\tilde{f}\|} = \frac{\|x\|}{1} = \|x\|$$

and consequently $\sup\left\{\frac{|f(x)|}{\|f\|} : f \in X^*, f \neq 0\right\} = \|x\|.$

5.30. Solution.

- (a) It's clear that δ is linear. $|\delta(x)| = |x(0)| \le \sum_{0 \le x \le 1} |x(t)| = ||x||$. Therefore, δ is bounded and
 - $\|\delta\| \le 1.$

Take $x(t) \equiv 1$ and we have

$$|\delta(x)| = 1 \le \|\delta\| \|x\| = \|\delta\| \Longrightarrow \|\delta\| \ge 1.$$

We conclude that $\|\delta\| = 1$.

(b) Take
$$x_n(t) = \begin{cases} 2n - 2n^2 t, & 0 \le t \le \frac{1}{n} \\ 0, & \frac{1}{n} < t \le 1 \end{cases}$$
. Then we have $\delta(x) = x(0) = 2n$ and $||x|| = \int_0^1 |x(t) \, dt = \int_0^{\frac{1}{n}} (2n - 2n^2 t) \, dt = 1.$

Therefore, $|\delta(x)| = 2n \le ||\delta|| ||x|| = ||\delta|| \Longrightarrow ||\delta|| \ge 2n$ and thus δ is unbounded.